dep.go 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390
  1. package topo
  2. import (
  3. "fmt"
  4. "strings"
  5. )
  6. type (
  7. AliasMap[T comparable] map[T]T
  8. NodeSet[T comparable] map[T]bool
  9. DepMap[T comparable] map[T]NodeSet[T]
  10. )
  11. type NodeInfo[V any] struct {
  12. Color string
  13. Background string
  14. Value V
  15. }
  16. type Graph[T comparable, V any] struct {
  17. alias AliasMap[T] // alias -> aliased
  18. aliases DepMap[T] // aliased -> alias
  19. nodes NodeSet[T]
  20. // node info map
  21. nodeInfo map[T]*NodeInfo[V]
  22. // `dependencies` tracks child -> parents.
  23. dependencies DepMap[T]
  24. // `dependents` tracks parent -> children.
  25. dependents DepMap[T]
  26. // Keep track of the nodes of the graph themselves.
  27. }
  28. func New[T comparable, V any]() *Graph[T, V] {
  29. return &Graph[T, V]{
  30. nodes: make(NodeSet[T]),
  31. dependencies: make(DepMap[T]),
  32. dependents: make(DepMap[T]),
  33. alias: make(AliasMap[T]),
  34. aliases: make(DepMap[T]),
  35. nodeInfo: make(map[T]*NodeInfo[V]),
  36. }
  37. }
  38. func (g *Graph[T, V]) Len() int {
  39. return len(g.nodes)
  40. }
  41. func (g *Graph[T, V]) Exists(node T) bool {
  42. // check aliases
  43. node = g.getAlias(node)
  44. _, ok := g.nodes[node]
  45. return ok
  46. }
  47. func (g *Graph[T, V]) Alias(node, alias T) error {
  48. if alias == node {
  49. return nil
  50. }
  51. // add node
  52. g.nodes[node] = true
  53. // add alias
  54. if _, ok := g.alias[alias]; ok {
  55. return ErrConflictingAlias
  56. }
  57. g.alias[alias] = node
  58. g.aliases.addNodeToNodeset(node, alias)
  59. return nil
  60. }
  61. func (g *Graph[T, V]) AddNode(node T) {
  62. node = g.getAlias(node)
  63. g.nodes[node] = true
  64. }
  65. func (g *Graph[T, V]) getAlias(node T) T {
  66. if aliasNode, ok := g.alias[node]; ok {
  67. return aliasNode
  68. }
  69. return node
  70. }
  71. func (g *Graph[T, V]) SetNodeInfo(node T, nodeInfo *NodeInfo[V]) {
  72. g.nodeInfo[g.getAlias(node)] = nodeInfo
  73. }
  74. func (g *Graph[T, V]) GetNodeInfo(node T) *NodeInfo[V] {
  75. return g.nodeInfo[g.getAlias(node)]
  76. }
  77. // Retrieve aliases of a node.
  78. func (g *Graph[T, V]) GetAliases(node T) []T {
  79. size := len(g.aliases[node])
  80. aliases := make([]T, 0, size)
  81. for alias := range g.aliases[node] {
  82. aliases = append(aliases, alias)
  83. }
  84. return aliases
  85. }
  86. func (g *Graph[T, V]) DependOn(child, parent T) error {
  87. child = g.getAlias(child)
  88. parent = g.getAlias(parent)
  89. if child == parent {
  90. return ErrSelfReferential
  91. }
  92. if g.DependsOn(parent, child) {
  93. return ErrCircular
  94. }
  95. g.AddNode(parent)
  96. g.AddNode(child)
  97. // Add nodes.
  98. g.nodes[parent] = true
  99. g.nodes[child] = true
  100. // Add edges.
  101. g.dependents.addNodeToNodeset(parent, child)
  102. g.dependencies.addNodeToNodeset(child, parent)
  103. return nil
  104. }
  105. func (g *Graph[T, V]) String() string {
  106. var sb strings.Builder
  107. sb.WriteString("digraph {\n")
  108. sb.WriteString("compound=true;\n")
  109. sb.WriteString("concentrate=true;\n")
  110. sb.WriteString("node [shape = record, ordering=out];\n")
  111. for node := range g.nodes {
  112. extra := ""
  113. if info, ok := g.nodeInfo[node]; ok {
  114. if info.Background != "" || info.Color != "" {
  115. extra = fmt.Sprintf("[color = %s, style = filled, fillcolor = %s]", info.Color, info.Background)
  116. }
  117. }
  118. sb.WriteString(fmt.Sprintf("\t\"%v\"%s;\n", node, extra))
  119. }
  120. for parent, children := range g.dependencies {
  121. for child := range children {
  122. sb.WriteString(fmt.Sprintf("\t\"%v\" -> \"%v\";\n", parent, child))
  123. }
  124. }
  125. sb.WriteString("}")
  126. return sb.String()
  127. }
  128. func (g *Graph[T, V]) DependsOn(child, parent T) bool {
  129. deps := g.Dependencies(child)
  130. _, ok := deps[parent]
  131. return ok
  132. }
  133. func (g *Graph[T, V]) HasDependent(parent, child T) bool {
  134. deps := g.Dependents(parent)
  135. _, ok := deps[child]
  136. return ok
  137. }
  138. func (g *Graph[T, V]) Leaves() []T {
  139. leaves := make([]T, 0)
  140. for node := range g.nodes {
  141. if _, ok := g.dependencies[node]; !ok {
  142. leaves = append(leaves, node)
  143. }
  144. }
  145. return leaves
  146. }
  147. // LeavesMap returns a map of leaves with the node as key and the node info value as value.
  148. func (g *Graph[T, V]) LeavesMap() map[T]V {
  149. leaves := make(map[T]V, 0)
  150. for node := range g.nodes {
  151. if _, ok := g.dependencies[node]; !ok {
  152. nodeInfo := g.GetNodeInfo(node)
  153. if nodeInfo == nil {
  154. nodeInfo = &NodeInfo[V]{}
  155. }
  156. leaves[node] = nodeInfo.Value
  157. }
  158. }
  159. return leaves
  160. }
  161. // TopoSortedLayers returns a slice of all of the graph nodes in topological sort order.
  162. func (g *Graph[T, V]) TopoSortedLayers() [][]T {
  163. layers := [][]T{}
  164. // Copy the graph
  165. shrinkingGraph := g.clone()
  166. for {
  167. leaves := shrinkingGraph.Leaves()
  168. if len(leaves) == 0 {
  169. break
  170. }
  171. layers = append(layers, leaves)
  172. for _, leafNode := range leaves {
  173. shrinkingGraph.remove(leafNode)
  174. }
  175. }
  176. return layers
  177. }
  178. // TopoSortedLayerMap returns a slice of all of the graph nodes in topological sort order with their node info
  179. func (g *Graph[T, V]) TopoSortedLayerMap() []map[T]V {
  180. layers := []map[T]V{}
  181. // Copy the graph
  182. shrinkingGraph := g.clone()
  183. for {
  184. leaves := shrinkingGraph.LeavesMap()
  185. if len(leaves) == 0 {
  186. break
  187. }
  188. layers = append(layers, leaves)
  189. for leafNode := range leaves {
  190. shrinkingGraph.remove(leafNode)
  191. }
  192. }
  193. return layers
  194. }
  195. func (dm DepMap[T]) removeFromDepmap(key, node T) {
  196. if nodes := dm[key]; len(nodes) == 1 {
  197. // The only element in the nodeset must be `node`, so we
  198. // can delete the entry entirely.
  199. delete(dm, key)
  200. } else {
  201. // Otherwise, remove the single node from the nodeset.
  202. delete(nodes, node)
  203. }
  204. }
  205. func (g *Graph[T, V]) remove(node T) {
  206. // Remove edges from things that depend on `node`.
  207. for dependent := range g.dependents[node] {
  208. g.dependencies.removeFromDepmap(dependent, node)
  209. }
  210. delete(g.dependents, node)
  211. // Remove all edges from node to the things it depends on.
  212. for dependency := range g.dependencies[node] {
  213. g.dependents.removeFromDepmap(dependency, node)
  214. }
  215. delete(g.dependencies, node)
  216. // Finally, remove the node itself.
  217. delete(g.nodes, node)
  218. }
  219. // TopoSorted returns all the nodes in the graph is topological sort order.
  220. func (g *Graph[T, V]) TopoSorted() []T {
  221. nodeCount := 0
  222. layers := g.TopoSortedLayers()
  223. for _, layer := range layers {
  224. nodeCount += len(layer)
  225. }
  226. allNodes := make([]T, 0, nodeCount)
  227. for _, layer := range layers {
  228. allNodes = append(allNodes, layer...)
  229. }
  230. return allNodes
  231. }
  232. func (g *Graph[T, V]) Dependencies(child T) NodeSet[T] {
  233. return g.buildTransitive(child, g.immediateDependencies)
  234. }
  235. func (g *Graph[T, V]) immediateDependencies(node T) NodeSet[T] {
  236. return g.dependencies[node]
  237. }
  238. func (g *Graph[T, V]) Dependents(parent T) NodeSet[T] {
  239. return g.buildTransitive(parent, g.immediateDependents)
  240. }
  241. func (g *Graph[T, V]) immediateDependents(node T) NodeSet[T] {
  242. return g.dependents[node]
  243. }
  244. func (g *Graph[T, V]) clone() *Graph[T, V] {
  245. return &Graph[T, V]{
  246. dependencies: g.dependencies.copy(),
  247. dependents: g.dependents.copy(),
  248. nodes: g.nodes.copy(),
  249. nodeInfo: g.nodeInfo, // not copied, as it is not modified
  250. }
  251. }
  252. // buildTransitive starts at `root` and continues calling `nextFn` to keep discovering more nodes until
  253. // the graph cannot produce any more. It returns the set of all discovered nodes.
  254. func (g *Graph[T, V]) buildTransitive(root T, nextFn func(T) NodeSet[T]) NodeSet[T] {
  255. if _, ok := g.nodes[root]; !ok {
  256. return nil
  257. }
  258. out := make(NodeSet[T])
  259. searchNext := []T{root}
  260. for len(searchNext) > 0 {
  261. // List of new nodes from this layer of the dependency graph. This is
  262. // assigned to `searchNext` at the end of the outer "discovery" loop.
  263. discovered := []T{}
  264. for _, node := range searchNext {
  265. // For each node to discover, find the next nodes.
  266. for nextNode := range nextFn(node) {
  267. // If we have not seen the node before, add it to the output as well
  268. // as the list of nodes to traverse in the next iteration.
  269. if _, ok := out[nextNode]; !ok {
  270. out[nextNode] = true
  271. discovered = append(discovered, nextNode)
  272. }
  273. }
  274. }
  275. searchNext = discovered
  276. }
  277. return out
  278. }
  279. func (s NodeSet[T]) copy() NodeSet[T] {
  280. out := make(NodeSet[T], len(s))
  281. for k, v := range s {
  282. out[k] = v
  283. }
  284. return out
  285. }
  286. func (m DepMap[T]) copy() DepMap[T] {
  287. out := make(DepMap[T], len(m))
  288. for k, v := range m {
  289. out[k] = v.copy()
  290. }
  291. return out
  292. }
  293. func (dm DepMap[T]) addNodeToNodeset(key, node T) {
  294. nodes, ok := dm[key]
  295. if !ok {
  296. nodes = make(NodeSet[T])
  297. dm[key] = nodes
  298. }
  299. nodes[node] = true
  300. }