dep.go 7.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371
  1. package topo
  2. import (
  3. "fmt"
  4. "strings"
  5. "github.com/Jguer/go-alpm/v2"
  6. )
  7. type (
  8. NodeSet[T comparable] map[T]bool
  9. ProvidesMap[T comparable] map[T]*DependencyInfo[T]
  10. DepMap[T comparable] map[T]NodeSet[T]
  11. )
  12. func (n NodeSet[T]) Slice() []T {
  13. var slice []T
  14. for node := range n {
  15. slice = append(slice, node)
  16. }
  17. return slice
  18. }
  19. type NodeInfo[V any] struct {
  20. Color string
  21. Background string
  22. Value V
  23. }
  24. type DependencyInfo[T comparable] struct {
  25. Provider T
  26. alpm.Depend
  27. }
  28. type CheckFn[T comparable, V any] func(T, V) error
  29. type Graph[T comparable, V any] struct {
  30. nodes NodeSet[T]
  31. // node info map
  32. nodeInfo map[T]*NodeInfo[V]
  33. // `provides` tracks provides -> node.
  34. provides ProvidesMap[T]
  35. // `dependencies` tracks child -> parents.
  36. dependencies DepMap[T]
  37. // `dependents` tracks parent -> children.
  38. dependents DepMap[T]
  39. }
  40. func New[T comparable, V any]() *Graph[T, V] {
  41. return &Graph[T, V]{
  42. nodes: make(NodeSet[T]),
  43. dependencies: make(DepMap[T]),
  44. dependents: make(DepMap[T]),
  45. nodeInfo: make(map[T]*NodeInfo[V]),
  46. provides: make(ProvidesMap[T]),
  47. }
  48. }
  49. func (g *Graph[T, V]) Len() int {
  50. return len(g.nodes)
  51. }
  52. func (g *Graph[T, V]) Exists(node T) bool {
  53. _, ok := g.nodes[node]
  54. return ok
  55. }
  56. func (g *Graph[T, V]) AddNode(node T) {
  57. g.nodes[node] = true
  58. }
  59. func (g *Graph[T, V]) ProvidesExists(provides T) bool {
  60. _, ok := g.provides[provides]
  61. return ok
  62. }
  63. func (g *Graph[T, V]) GetProviderNode(provides T) *DependencyInfo[T] {
  64. return g.provides[provides]
  65. }
  66. func (g *Graph[T, V]) Provides(provides T, depInfo *alpm.Depend, node T) {
  67. g.provides[provides] = &DependencyInfo[T]{
  68. Provider: node,
  69. Depend: *depInfo,
  70. }
  71. }
  72. func (g *Graph[T, V]) ForEach(f CheckFn[T, V]) error {
  73. for node := range g.nodes {
  74. if err := f(node, g.nodeInfo[node].Value); err != nil {
  75. return err
  76. }
  77. }
  78. return nil
  79. }
  80. func (g *Graph[T, V]) SetNodeInfo(node T, nodeInfo *NodeInfo[V]) {
  81. g.nodeInfo[node] = nodeInfo
  82. }
  83. func (g *Graph[T, V]) GetNodeInfo(node T) *NodeInfo[V] {
  84. return g.nodeInfo[node]
  85. }
  86. func (g *Graph[T, V]) DependOn(child, parent T) error {
  87. if child == parent {
  88. return ErrSelfReferential
  89. }
  90. if g.DependsOn(parent, child) {
  91. return ErrCircular
  92. }
  93. g.AddNode(parent)
  94. g.AddNode(child)
  95. // Add edges.
  96. g.dependents.addNodeToNodeset(parent, child)
  97. g.dependencies.addNodeToNodeset(child, parent)
  98. return nil
  99. }
  100. func (g *Graph[T, V]) String() string {
  101. var sb strings.Builder
  102. sb.WriteString("digraph {\n")
  103. sb.WriteString("compound=true;\n")
  104. sb.WriteString("concentrate=true;\n")
  105. sb.WriteString("node [shape = record, ordering=out];\n")
  106. for node := range g.nodes {
  107. extra := ""
  108. if info, ok := g.nodeInfo[node]; ok {
  109. if info.Background != "" || info.Color != "" {
  110. extra = fmt.Sprintf("[color = %s, style = filled, fillcolor = %s]", info.Color, info.Background)
  111. }
  112. }
  113. sb.WriteString(fmt.Sprintf("\t\"%v\"%s;\n", node, extra))
  114. }
  115. for parent, children := range g.dependencies {
  116. for child := range children {
  117. sb.WriteString(fmt.Sprintf("\t\"%v\" -> \"%v\";\n", parent, child))
  118. }
  119. }
  120. sb.WriteString("}")
  121. return sb.String()
  122. }
  123. func (g *Graph[T, V]) DependsOn(child, parent T) bool {
  124. deps := g.Dependencies(child)
  125. _, ok := deps[parent]
  126. return ok
  127. }
  128. func (g *Graph[T, V]) HasDependent(parent, child T) bool {
  129. deps := g.Dependents(parent)
  130. _, ok := deps[child]
  131. return ok
  132. }
  133. // leavesMap returns a map of leaves with the node as key and the node info value as value.
  134. func (g *Graph[T, V]) leavesMap() map[T]V {
  135. leaves := make(map[T]V, 0)
  136. for node := range g.nodes {
  137. if _, ok := g.dependencies[node]; !ok {
  138. nodeInfo := g.GetNodeInfo(node)
  139. if nodeInfo == nil {
  140. nodeInfo = &NodeInfo[V]{}
  141. }
  142. leaves[node] = nodeInfo.Value
  143. }
  144. }
  145. return leaves
  146. }
  147. // TopoSortedLayerMap returns a slice of all of the graph nodes in topological sort order with their node info.
  148. func (g *Graph[T, V]) TopoSortedLayerMap(checkFn CheckFn[T, V]) []map[T]V {
  149. layers := []map[T]V{}
  150. // Copy the graph
  151. shrinkingGraph := g.clone()
  152. for {
  153. leaves := shrinkingGraph.leavesMap()
  154. if len(leaves) == 0 {
  155. break
  156. }
  157. layers = append(layers, leaves)
  158. for leafNode := range leaves {
  159. if checkFn != nil {
  160. if err := checkFn(leafNode, leaves[leafNode]); err != nil {
  161. return nil
  162. }
  163. }
  164. shrinkingGraph.remove(leafNode)
  165. }
  166. }
  167. return layers
  168. }
  169. // returns if it was the last
  170. func (dm DepMap[T]) removeFromDepmap(key, node T) bool {
  171. if nodes := dm[key]; len(nodes) == 1 {
  172. // The only element in the nodeset must be `node`, so we
  173. // can delete the entry entirely.
  174. delete(dm, key)
  175. return true
  176. } else {
  177. // Otherwise, remove the single node from the nodeset.
  178. delete(nodes, node)
  179. return false
  180. }
  181. }
  182. // Prune removes the node,
  183. // its dependencies if there are no other dependents
  184. // and its dependents
  185. func (g *Graph[T, V]) Prune(node T) []T {
  186. pruned := []T{node}
  187. // Remove edges from things that depend on `node`.
  188. for dependent := range g.dependents[node] {
  189. last := g.dependencies.removeFromDepmap(dependent, node)
  190. if last {
  191. pruned = append(pruned, g.Prune(dependent)...)
  192. }
  193. }
  194. delete(g.dependents, node)
  195. // Remove all edges from node to the things it depends on.
  196. for dependency := range g.dependencies[node] {
  197. last := g.dependents.removeFromDepmap(dependency, node)
  198. if last {
  199. pruned = append(pruned, g.Prune(dependency)...)
  200. }
  201. }
  202. delete(g.dependencies, node)
  203. // Finally, remove the node itself.
  204. delete(g.nodes, node)
  205. return pruned
  206. }
  207. func (g *Graph[T, V]) remove(node T) {
  208. // Remove edges from things that depend on `node`.
  209. for dependent := range g.dependents[node] {
  210. g.dependencies.removeFromDepmap(dependent, node)
  211. }
  212. delete(g.dependents, node)
  213. // Remove all edges from node to the things it depends on.
  214. for dependency := range g.dependencies[node] {
  215. g.dependents.removeFromDepmap(dependency, node)
  216. }
  217. delete(g.dependencies, node)
  218. // Finally, remove the node itself.
  219. delete(g.nodes, node)
  220. }
  221. func (g *Graph[T, V]) Dependencies(child T) NodeSet[T] {
  222. return g.buildTransitive(child, g.ImmediateDependencies)
  223. }
  224. func (g *Graph[T, V]) ImmediateDependencies(node T) NodeSet[T] {
  225. return g.dependencies[node]
  226. }
  227. func (g *Graph[T, V]) Dependents(parent T) NodeSet[T] {
  228. return g.buildTransitive(parent, g.immediateDependents)
  229. }
  230. func (g *Graph[T, V]) immediateDependents(node T) NodeSet[T] {
  231. return g.dependents[node]
  232. }
  233. func (g *Graph[T, V]) clone() *Graph[T, V] {
  234. return &Graph[T, V]{
  235. dependencies: g.dependencies.copy(),
  236. dependents: g.dependents.copy(),
  237. nodes: g.nodes.copy(),
  238. nodeInfo: g.nodeInfo, // not copied, as it is not modified
  239. }
  240. }
  241. // buildTransitive starts at `root` and continues calling `nextFn` to keep discovering more nodes until
  242. // the graph cannot produce any more. It returns the set of all discovered nodes.
  243. func (g *Graph[T, V]) buildTransitive(root T, nextFn func(T) NodeSet[T]) NodeSet[T] {
  244. if _, ok := g.nodes[root]; !ok {
  245. return nil
  246. }
  247. out := make(NodeSet[T])
  248. searchNext := []T{root}
  249. for len(searchNext) > 0 {
  250. // List of new nodes from this layer of the dependency graph. This is
  251. // assigned to `searchNext` at the end of the outer "discovery" loop.
  252. discovered := []T{}
  253. for _, node := range searchNext {
  254. // For each node to discover, find the next nodes.
  255. for nextNode := range nextFn(node) {
  256. // If we have not seen the node before, add it to the output as well
  257. // as the list of nodes to traverse in the next iteration.
  258. if _, ok := out[nextNode]; !ok {
  259. out[nextNode] = true
  260. discovered = append(discovered, nextNode)
  261. }
  262. }
  263. }
  264. searchNext = discovered
  265. }
  266. return out
  267. }
  268. func (s NodeSet[T]) copy() NodeSet[T] {
  269. out := make(NodeSet[T], len(s))
  270. for k, v := range s {
  271. out[k] = v
  272. }
  273. return out
  274. }
  275. func (dm DepMap[T]) copy() DepMap[T] {
  276. out := make(DepMap[T], len(dm))
  277. for k := range dm {
  278. out[k] = dm[k].copy()
  279. }
  280. return out
  281. }
  282. func (dm DepMap[T]) addNodeToNodeset(key, node T) {
  283. nodes, ok := dm[key]
  284. if !ok {
  285. nodes = make(NodeSet[T])
  286. dm[key] = nodes
  287. }
  288. nodes[node] = true
  289. }