dep.go 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340
  1. package topo
  2. import (
  3. "fmt"
  4. "strings"
  5. "github.com/Jguer/yay/v12/pkg/text"
  6. )
  7. type (
  8. NodeSet[T comparable] map[T]bool
  9. DepMap[T comparable] map[T]NodeSet[T]
  10. )
  11. type NodeInfo[V any] struct {
  12. Color string
  13. Background string
  14. Value V
  15. }
  16. type CheckFn[T comparable, V any] func(T, V) error
  17. type Graph[T comparable, V any] struct {
  18. nodes NodeSet[T]
  19. // node info map
  20. nodeInfo map[T]*NodeInfo[V]
  21. // `dependencies` tracks child -> parents.
  22. dependencies DepMap[T]
  23. // `dependents` tracks parent -> children.
  24. dependents DepMap[T]
  25. }
  26. func New[T comparable, V any]() *Graph[T, V] {
  27. return &Graph[T, V]{
  28. nodes: make(NodeSet[T]),
  29. dependencies: make(DepMap[T]),
  30. dependents: make(DepMap[T]),
  31. nodeInfo: make(map[T]*NodeInfo[V]),
  32. }
  33. }
  34. func (g *Graph[T, V]) Len() int {
  35. return len(g.nodes)
  36. }
  37. func (g *Graph[T, V]) Exists(node T) bool {
  38. _, ok := g.nodes[node]
  39. return ok
  40. }
  41. func (g *Graph[T, V]) AddNode(node T) {
  42. g.nodes[node] = true
  43. }
  44. func (g *Graph[T, V]) ForEach(f CheckFn[T, V]) error {
  45. for node := range g.nodes {
  46. if err := f(node, g.nodeInfo[node].Value); err != nil {
  47. return err
  48. }
  49. }
  50. return nil
  51. }
  52. func (g *Graph[T, V]) SetNodeInfo(node T, nodeInfo *NodeInfo[V]) {
  53. g.nodeInfo[node] = nodeInfo
  54. }
  55. func (g *Graph[T, V]) GetNodeInfo(node T) *NodeInfo[V] {
  56. return g.nodeInfo[node]
  57. }
  58. func (g *Graph[T, V]) DependOn(child, parent T) error {
  59. if child == parent {
  60. return ErrSelfReferential
  61. }
  62. if g.DependsOn(parent, child) {
  63. return ErrCircular
  64. }
  65. g.AddNode(parent)
  66. g.AddNode(child)
  67. // Add nodes.
  68. g.nodes[parent] = true
  69. g.nodes[child] = true
  70. // Add edges.
  71. g.dependents.addNodeToNodeset(parent, child)
  72. g.dependencies.addNodeToNodeset(child, parent)
  73. return nil
  74. }
  75. func (g *Graph[T, V]) String() string {
  76. var sb strings.Builder
  77. sb.WriteString("digraph {\n")
  78. sb.WriteString("compound=true;\n")
  79. sb.WriteString("concentrate=true;\n")
  80. sb.WriteString("node [shape = record, ordering=out];\n")
  81. for node := range g.nodes {
  82. extra := ""
  83. if info, ok := g.nodeInfo[node]; ok {
  84. if info.Background != "" || info.Color != "" {
  85. extra = fmt.Sprintf("[color = %s, style = filled, fillcolor = %s]", info.Color, info.Background)
  86. }
  87. }
  88. sb.WriteString(fmt.Sprintf("\t\"%v\"%s;\n", node, extra))
  89. }
  90. for parent, children := range g.dependencies {
  91. for child := range children {
  92. sb.WriteString(fmt.Sprintf("\t\"%v\" -> \"%v\";\n", parent, child))
  93. }
  94. }
  95. sb.WriteString("}")
  96. return sb.String()
  97. }
  98. func (g *Graph[T, V]) DependsOn(child, parent T) bool {
  99. deps := g.Dependencies(child)
  100. _, ok := deps[parent]
  101. return ok
  102. }
  103. func (g *Graph[T, V]) HasDependent(parent, child T) bool {
  104. deps := g.Dependents(parent)
  105. _, ok := deps[child]
  106. return ok
  107. }
  108. // leavesMap returns a map of leaves with the node as key and the node info value as value.
  109. func (g *Graph[T, V]) leavesMap() map[T]V {
  110. leaves := make(map[T]V, 0)
  111. for node := range g.nodes {
  112. if _, ok := g.dependencies[node]; !ok {
  113. nodeInfo := g.GetNodeInfo(node)
  114. if nodeInfo == nil {
  115. nodeInfo = &NodeInfo[V]{}
  116. }
  117. leaves[node] = nodeInfo.Value
  118. }
  119. }
  120. return leaves
  121. }
  122. // TopoSortedLayerMap returns a slice of all of the graph nodes in topological sort order with their node info.
  123. func (g *Graph[T, V]) TopoSortedLayerMap(checkFn CheckFn[T, V]) []map[T]V {
  124. layers := []map[T]V{}
  125. // Copy the graph
  126. shrinkingGraph := g.clone()
  127. for {
  128. leaves := shrinkingGraph.leavesMap()
  129. if len(leaves) == 0 {
  130. break
  131. }
  132. layers = append(layers, leaves)
  133. for leafNode := range leaves {
  134. if checkFn != nil {
  135. if err := checkFn(leafNode, leaves[leafNode]); err != nil {
  136. return nil
  137. }
  138. }
  139. shrinkingGraph.remove(leafNode)
  140. }
  141. }
  142. return layers
  143. }
  144. // returns if it was the last
  145. func (dm DepMap[T]) removeFromDepmap(key, node T) bool {
  146. if nodes := dm[key]; len(nodes) == 1 {
  147. // The only element in the nodeset must be `node`, so we
  148. // can delete the entry entirely.
  149. delete(dm, key)
  150. return true
  151. } else {
  152. // Otherwise, remove the single node from the nodeset.
  153. delete(nodes, node)
  154. return false
  155. }
  156. }
  157. // Prune removes the node,
  158. // its dependencies if there are no other dependents
  159. // and its dependents
  160. func (g *Graph[T, V]) Prune(node T) []T {
  161. pruned := []T{node}
  162. // Remove edges from things that depend on `node`.
  163. for dependent := range g.dependents[node] {
  164. last := g.dependencies.removeFromDepmap(dependent, node)
  165. text.Debugln("pruning dependent", dependent, last)
  166. if last {
  167. pruned = append(pruned, g.Prune(dependent)...)
  168. }
  169. }
  170. delete(g.dependents, node)
  171. // Remove all edges from node to the things it depends on.
  172. for dependency := range g.dependencies[node] {
  173. last := g.dependents.removeFromDepmap(dependency, node)
  174. text.Debugln("pruning dependency", dependency, last)
  175. if last {
  176. pruned = append(pruned, g.Prune(dependency)...)
  177. }
  178. }
  179. delete(g.dependencies, node)
  180. // Finally, remove the node itself.
  181. delete(g.nodes, node)
  182. return pruned
  183. }
  184. func (g *Graph[T, V]) remove(node T) {
  185. // Remove edges from things that depend on `node`.
  186. for dependent := range g.dependents[node] {
  187. g.dependencies.removeFromDepmap(dependent, node)
  188. }
  189. delete(g.dependents, node)
  190. // Remove all edges from node to the things it depends on.
  191. for dependency := range g.dependencies[node] {
  192. g.dependents.removeFromDepmap(dependency, node)
  193. }
  194. delete(g.dependencies, node)
  195. // Finally, remove the node itself.
  196. delete(g.nodes, node)
  197. }
  198. func (g *Graph[T, V]) Dependencies(child T) NodeSet[T] {
  199. return g.buildTransitive(child, g.immediateDependencies)
  200. }
  201. func (g *Graph[T, V]) immediateDependencies(node T) NodeSet[T] {
  202. return g.dependencies[node]
  203. }
  204. func (g *Graph[T, V]) Dependents(parent T) NodeSet[T] {
  205. return g.buildTransitive(parent, g.immediateDependents)
  206. }
  207. func (g *Graph[T, V]) immediateDependents(node T) NodeSet[T] {
  208. return g.dependents[node]
  209. }
  210. func (g *Graph[T, V]) clone() *Graph[T, V] {
  211. return &Graph[T, V]{
  212. dependencies: g.dependencies.copy(),
  213. dependents: g.dependents.copy(),
  214. nodes: g.nodes.copy(),
  215. nodeInfo: g.nodeInfo, // not copied, as it is not modified
  216. }
  217. }
  218. // buildTransitive starts at `root` and continues calling `nextFn` to keep discovering more nodes until
  219. // the graph cannot produce any more. It returns the set of all discovered nodes.
  220. func (g *Graph[T, V]) buildTransitive(root T, nextFn func(T) NodeSet[T]) NodeSet[T] {
  221. if _, ok := g.nodes[root]; !ok {
  222. return nil
  223. }
  224. out := make(NodeSet[T])
  225. searchNext := []T{root}
  226. for len(searchNext) > 0 {
  227. // List of new nodes from this layer of the dependency graph. This is
  228. // assigned to `searchNext` at the end of the outer "discovery" loop.
  229. discovered := []T{}
  230. for _, node := range searchNext {
  231. // For each node to discover, find the next nodes.
  232. for nextNode := range nextFn(node) {
  233. // If we have not seen the node before, add it to the output as well
  234. // as the list of nodes to traverse in the next iteration.
  235. if _, ok := out[nextNode]; !ok {
  236. out[nextNode] = true
  237. discovered = append(discovered, nextNode)
  238. }
  239. }
  240. }
  241. searchNext = discovered
  242. }
  243. return out
  244. }
  245. func (s NodeSet[T]) copy() NodeSet[T] {
  246. out := make(NodeSet[T], len(s))
  247. for k, v := range s {
  248. out[k] = v
  249. }
  250. return out
  251. }
  252. func (dm DepMap[T]) copy() DepMap[T] {
  253. out := make(DepMap[T], len(dm))
  254. for k := range dm {
  255. out[k] = dm[k].copy()
  256. }
  257. return out
  258. }
  259. func (dm DepMap[T]) addNodeToNodeset(key, node T) {
  260. nodes, ok := dm[key]
  261. if !ok {
  262. nodes = make(NodeSet[T])
  263. dm[key] = nodes
  264. }
  265. nodes[node] = true
  266. }