dep.go 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375
  1. package topo
  2. import (
  3. "fmt"
  4. "strings"
  5. "github.com/Jguer/go-alpm/v2"
  6. "github.com/Jguer/yay/v12/pkg/text"
  7. )
  8. type (
  9. NodeSet[T comparable] map[T]bool
  10. ProvidesMap[T comparable] map[T]*DependencyInfo[T]
  11. DepMap[T comparable] map[T]NodeSet[T]
  12. )
  13. func (n NodeSet[T]) Slice() []T {
  14. var slice []T
  15. for node := range n {
  16. slice = append(slice, node)
  17. }
  18. return slice
  19. }
  20. type NodeInfo[V any] struct {
  21. Color string
  22. Background string
  23. Value V
  24. }
  25. type DependencyInfo[T comparable] struct {
  26. Provider T
  27. alpm.Depend
  28. }
  29. type CheckFn[T comparable, V any] func(T, V) error
  30. type Graph[T comparable, V any] struct {
  31. nodes NodeSet[T]
  32. // node info map
  33. nodeInfo map[T]*NodeInfo[V]
  34. // `provides` tracks provides -> node.
  35. provides ProvidesMap[T]
  36. // `dependencies` tracks child -> parents.
  37. dependencies DepMap[T]
  38. // `dependents` tracks parent -> children.
  39. dependents DepMap[T]
  40. }
  41. func New[T comparable, V any]() *Graph[T, V] {
  42. return &Graph[T, V]{
  43. nodes: make(NodeSet[T]),
  44. dependencies: make(DepMap[T]),
  45. dependents: make(DepMap[T]),
  46. nodeInfo: make(map[T]*NodeInfo[V]),
  47. provides: make(ProvidesMap[T]),
  48. }
  49. }
  50. func (g *Graph[T, V]) Len() int {
  51. return len(g.nodes)
  52. }
  53. func (g *Graph[T, V]) Exists(node T) bool {
  54. _, ok := g.nodes[node]
  55. return ok
  56. }
  57. func (g *Graph[T, V]) AddNode(node T) {
  58. g.nodes[node] = true
  59. }
  60. func (g *Graph[T, V]) ProvidesExists(provides T) bool {
  61. _, ok := g.provides[provides]
  62. return ok
  63. }
  64. func (g *Graph[T, V]) GetProviderNode(provides T) *DependencyInfo[T] {
  65. return g.provides[provides]
  66. }
  67. func (g *Graph[T, V]) Provides(provides T, depInfo *alpm.Depend, node T) {
  68. g.provides[provides] = &DependencyInfo[T]{
  69. Provider: node,
  70. Depend: *depInfo,
  71. }
  72. }
  73. func (g *Graph[T, V]) ForEach(f CheckFn[T, V]) error {
  74. for node := range g.nodes {
  75. if err := f(node, g.nodeInfo[node].Value); err != nil {
  76. return err
  77. }
  78. }
  79. return nil
  80. }
  81. func (g *Graph[T, V]) SetNodeInfo(node T, nodeInfo *NodeInfo[V]) {
  82. g.nodeInfo[node] = nodeInfo
  83. }
  84. func (g *Graph[T, V]) GetNodeInfo(node T) *NodeInfo[V] {
  85. return g.nodeInfo[node]
  86. }
  87. func (g *Graph[T, V]) DependOn(child, parent T) error {
  88. if child == parent {
  89. return ErrSelfReferential
  90. }
  91. if g.DependsOn(parent, child) {
  92. return ErrCircular
  93. }
  94. g.AddNode(parent)
  95. g.AddNode(child)
  96. // Add edges.
  97. g.dependents.addNodeToNodeset(parent, child)
  98. g.dependencies.addNodeToNodeset(child, parent)
  99. return nil
  100. }
  101. func (g *Graph[T, V]) String() string {
  102. var sb strings.Builder
  103. sb.WriteString("digraph {\n")
  104. sb.WriteString("compound=true;\n")
  105. sb.WriteString("concentrate=true;\n")
  106. sb.WriteString("node [shape = record, ordering=out];\n")
  107. for node := range g.nodes {
  108. extra := ""
  109. if info, ok := g.nodeInfo[node]; ok {
  110. if info.Background != "" || info.Color != "" {
  111. extra = fmt.Sprintf("[color = %s, style = filled, fillcolor = %s]", info.Color, info.Background)
  112. }
  113. }
  114. sb.WriteString(fmt.Sprintf("\t\"%v\"%s;\n", node, extra))
  115. }
  116. for parent, children := range g.dependencies {
  117. for child := range children {
  118. sb.WriteString(fmt.Sprintf("\t\"%v\" -> \"%v\";\n", parent, child))
  119. }
  120. }
  121. sb.WriteString("}")
  122. return sb.String()
  123. }
  124. func (g *Graph[T, V]) DependsOn(child, parent T) bool {
  125. deps := g.Dependencies(child)
  126. _, ok := deps[parent]
  127. return ok
  128. }
  129. func (g *Graph[T, V]) HasDependent(parent, child T) bool {
  130. deps := g.Dependents(parent)
  131. _, ok := deps[child]
  132. return ok
  133. }
  134. // leavesMap returns a map of leaves with the node as key and the node info value as value.
  135. func (g *Graph[T, V]) leavesMap() map[T]V {
  136. leaves := make(map[T]V, 0)
  137. for node := range g.nodes {
  138. if _, ok := g.dependencies[node]; !ok {
  139. nodeInfo := g.GetNodeInfo(node)
  140. if nodeInfo == nil {
  141. nodeInfo = &NodeInfo[V]{}
  142. }
  143. leaves[node] = nodeInfo.Value
  144. }
  145. }
  146. return leaves
  147. }
  148. // TopoSortedLayerMap returns a slice of all of the graph nodes in topological sort order with their node info.
  149. func (g *Graph[T, V]) TopoSortedLayerMap(checkFn CheckFn[T, V]) []map[T]V {
  150. layers := []map[T]V{}
  151. // Copy the graph
  152. shrinkingGraph := g.clone()
  153. for {
  154. leaves := shrinkingGraph.leavesMap()
  155. if len(leaves) == 0 {
  156. break
  157. }
  158. layers = append(layers, leaves)
  159. for leafNode := range leaves {
  160. if checkFn != nil {
  161. if err := checkFn(leafNode, leaves[leafNode]); err != nil {
  162. return nil
  163. }
  164. }
  165. shrinkingGraph.remove(leafNode)
  166. }
  167. }
  168. return layers
  169. }
  170. // returns if it was the last
  171. func (dm DepMap[T]) removeFromDepmap(key, node T) bool {
  172. if nodes := dm[key]; len(nodes) == 1 {
  173. // The only element in the nodeset must be `node`, so we
  174. // can delete the entry entirely.
  175. delete(dm, key)
  176. return true
  177. } else {
  178. // Otherwise, remove the single node from the nodeset.
  179. delete(nodes, node)
  180. return false
  181. }
  182. }
  183. // Prune removes the node,
  184. // its dependencies if there are no other dependents
  185. // and its dependents
  186. func (g *Graph[T, V]) Prune(node T) []T {
  187. pruned := []T{node}
  188. // Remove edges from things that depend on `node`.
  189. for dependent := range g.dependents[node] {
  190. last := g.dependencies.removeFromDepmap(dependent, node)
  191. text.Debugln("pruning dependent", dependent, last)
  192. if last {
  193. pruned = append(pruned, g.Prune(dependent)...)
  194. }
  195. }
  196. delete(g.dependents, node)
  197. // Remove all edges from node to the things it depends on.
  198. for dependency := range g.dependencies[node] {
  199. last := g.dependents.removeFromDepmap(dependency, node)
  200. text.Debugln("pruning dependency", dependency, last)
  201. if last {
  202. pruned = append(pruned, g.Prune(dependency)...)
  203. }
  204. }
  205. delete(g.dependencies, node)
  206. // Finally, remove the node itself.
  207. delete(g.nodes, node)
  208. return pruned
  209. }
  210. func (g *Graph[T, V]) remove(node T) {
  211. // Remove edges from things that depend on `node`.
  212. for dependent := range g.dependents[node] {
  213. g.dependencies.removeFromDepmap(dependent, node)
  214. }
  215. delete(g.dependents, node)
  216. // Remove all edges from node to the things it depends on.
  217. for dependency := range g.dependencies[node] {
  218. g.dependents.removeFromDepmap(dependency, node)
  219. }
  220. delete(g.dependencies, node)
  221. // Finally, remove the node itself.
  222. delete(g.nodes, node)
  223. }
  224. func (g *Graph[T, V]) Dependencies(child T) NodeSet[T] {
  225. return g.buildTransitive(child, g.ImmediateDependencies)
  226. }
  227. func (g *Graph[T, V]) ImmediateDependencies(node T) NodeSet[T] {
  228. return g.dependencies[node]
  229. }
  230. func (g *Graph[T, V]) Dependents(parent T) NodeSet[T] {
  231. return g.buildTransitive(parent, g.immediateDependents)
  232. }
  233. func (g *Graph[T, V]) immediateDependents(node T) NodeSet[T] {
  234. return g.dependents[node]
  235. }
  236. func (g *Graph[T, V]) clone() *Graph[T, V] {
  237. return &Graph[T, V]{
  238. dependencies: g.dependencies.copy(),
  239. dependents: g.dependents.copy(),
  240. nodes: g.nodes.copy(),
  241. nodeInfo: g.nodeInfo, // not copied, as it is not modified
  242. }
  243. }
  244. // buildTransitive starts at `root` and continues calling `nextFn` to keep discovering more nodes until
  245. // the graph cannot produce any more. It returns the set of all discovered nodes.
  246. func (g *Graph[T, V]) buildTransitive(root T, nextFn func(T) NodeSet[T]) NodeSet[T] {
  247. if _, ok := g.nodes[root]; !ok {
  248. return nil
  249. }
  250. out := make(NodeSet[T])
  251. searchNext := []T{root}
  252. for len(searchNext) > 0 {
  253. // List of new nodes from this layer of the dependency graph. This is
  254. // assigned to `searchNext` at the end of the outer "discovery" loop.
  255. discovered := []T{}
  256. for _, node := range searchNext {
  257. // For each node to discover, find the next nodes.
  258. for nextNode := range nextFn(node) {
  259. // If we have not seen the node before, add it to the output as well
  260. // as the list of nodes to traverse in the next iteration.
  261. if _, ok := out[nextNode]; !ok {
  262. out[nextNode] = true
  263. discovered = append(discovered, nextNode)
  264. }
  265. }
  266. }
  267. searchNext = discovered
  268. }
  269. return out
  270. }
  271. func (s NodeSet[T]) copy() NodeSet[T] {
  272. out := make(NodeSet[T], len(s))
  273. for k, v := range s {
  274. out[k] = v
  275. }
  276. return out
  277. }
  278. func (dm DepMap[T]) copy() DepMap[T] {
  279. out := make(DepMap[T], len(dm))
  280. for k := range dm {
  281. out[k] = dm[k].copy()
  282. }
  283. return out
  284. }
  285. func (dm DepMap[T]) addNodeToNodeset(key, node T) {
  286. nodes, ok := dm[key]
  287. if !ok {
  288. nodes = make(NodeSet[T])
  289. dm[key] = nodes
  290. }
  291. nodes[node] = true
  292. }